Assessment of two QTL *QDB.ui-6DL and QDB.ui-*7DS for dwarf bunt resistance in winter wheat grown in the Pacific Northwest of the USA

J. Chen, R. Wang, R. Chowdhury, D. Hole, M. Krause, T. Gordon

Outline

- Importance of host resistance to dwarf bunt
- Fine mapping of *QDB.ui-7D*
- KASP genotyping for QDB.ui-7DS and QDB.ui-6DL
- Resistant lines and source of resistance
- Summary and future plan

Dwarf bunt (DB)

- One of the destructive diseases of winter wheat.
- Caused by *Tilletia controversa*.
- Reducing grain yield up to 75% in severe epidemic years (Goats, 1996), more occurrences reported in recent years.
- Reducing quality because of fishing smell and darker color.
- Teliospores can stay in the field for many years.

Disease management

- Chemicals: systemic fungicide difenoconazole
- International trade Quarantine
- Little attention in the past five decades
- Key traits for organic wheat production
- Bio-control
- Host resistance

Host resistance is an effective control method

- Fits gene-for-gene model
- DB and CB share the same resistance genes?
- Sixteen R genes designated: Bt1-Bt15, Btp (Goates, 2012)

QTL associated with both dwarf and common bunt resistance – 6DL and 7DS

QTL on 6DL:

For CB in Singh et al., 2016

Bt9 for CB in Steffan et al., 2017

For DB in Wang et al., 2019 and Gordon et al., 2020

QTL on 7DS:

For DB in Chen et al., 2016

For CB and DB in Muellner et al., 2020

Objective of the present study

• To assess the 6DL and 7DS QTL for dwarf bunt resistance in bunt differential lines and a set of winter wheat cultivars and lines grown in PNW wheat growing region

Winter wheat lines used in the current study

- Elite lines from UI program (2020)
- Elite lines from UI winter wheat variety trial (2018)
- Differential lines (Chen et al., 2016; Wang et al., 2019)
- Known resistance sources (Chen et al., 2016)

Dwarf bunt nursery in Logan, UT

- ➤ 1 m long rows
- Spores collected from the previous year
- ➤ Inoculate after seedling emergence, prior to snow cover
- ➤ Assess incidence (%) before harvest

Fine-mapping and candidate genes analysis for *QDB.ui-7DS* – *Heterozygous inbred family, exome capture, and target capture*

QDB.ui-7DS: Chen et al., 2016 and 2021 (personal communication) K1.26, K1.94, K1.97, K2.24, K2.50, K2.56, K3.82, K5.33, K5.38, K5.45, K5.58, K5.65, K7.56, K10.72, K10.84

QBt.ifa-7DS: Muellner et al., 2020 K7.073, K8.054, K8.186, K8.253, K9.310, K10.715, K10.835

Genetic map (cM)
IDO444 x RioBlanco
Chen et al., 2016
University of Idaho

College of Agricultural and Life Sciences

Physical map Chinese Spring v1.0

Haplotypes of the 7DS and 6DL QTL in thirteen differential lines

Bt gene	DB BLUE*	Line	7DSK5.33	7DSK5.45	6DL-2	6DL-5	Нар
Bt1	104.4	Sel 2092(M82-2012)	RB	RB	ID835	ID835	4
Bt2	119.2	Sel1102(M82-2012)	RB	RB	ML	ID835	3
Bt3	51.2	Ridit(M81-2008)	ID444	ID444	ML	ML	2
Bt4	120.4	CI 1558	RB	RB	ML	ML	6
Bt5	32.1	Hohenheimer(M82-2052)	ID444	ID444	ML	ID835	5
Bt6	67.4	Rio	ID444	ID444	ID835	ID835	1
Bt7	112.7	Sel. 50077	RB	RB	ML	ML	6
Bt8	7.5	PI 173438/Eg(M82-2161)	ID444	ID444	ID835	ID835	1
Bt9	55.3	Eg/PI 178383(M90-387)	ID444	ID444	ID835	ID835	1
Bt10	37.0	Eg/PI 178383(M82-2102)	ID444	ID444	ID835	ID835	1
Bt11	4.5	Eg/PI 166910(M82-2123)	RB	RB	ML	ID835	3
Bt12	3.4	PI 119333	ID444	ID444	ML	ML	2
Bt13	11.0	Thule III	ID444	ID444	ML	ML	2

University of Idaho
College of Agricultural and Life Sciences

^{*} Gordon et al., 2020. TAG

Haplotypes of the 7DS and 6DL QTL in known resistance sources

Line	Gene	7DSK5.33	7DSK5.45	6DL-2	6DL-5
Blizzard	Unknown	ID444	ID444	ML	ML
Bonneville	Unknown	ID444	ID444	ML	ID835
Golden Spike	Unknown	ID444	ID444	ID835	ID835
CI 14106	Bt-12	ID444	ID444	ML	ML
CI 14107	Bt-12	ID444	ID444	ML	ML
Gary	Unknown	RB	RB	ML	ID835
Promontory	Bt-3, Bt-9, Bt-10	ID444	ID444	ID835	ID835
Manning	Bt-3, Bt-9, Bt-10	RB	ID444	ID835	ID835
Deloris	Bt-3, Bt-9, Bt-10	RB	ID444	ML	ID835
Utah 100	Bt-3, Bt-9, Bt-10	RB	ID444	ML	ID835
Lewjain	Bt-8, Bt-9, Bt-10	ID444	ID444	ML	ML
Winridge	Bt-8, Bt-9, Bt-10	ID444	ID444	ML	ML
PI 178383	Bt-8, Bt-9, Bt-10+	ID444	ID444	ID835	ID835
Urstavarsity	βt-8εβt ₋ 9, Bt-10	ID444	ID444	ML	ID83

College of Agricultural and Life Sciences

Haplotypes of the 7DS and 6DL QTL in fourteen PNW resistant lines

Line	Resistance Source	2018DB (%)	7DS-K5.33	6D-J2	6D-J5
UI Sparrow	PI178383/PI476262/CI14106	0	ID444	ID835	ID835
IDO1607	PI178383/PI476262	0	ID444	ID835	ML
Utah 100	Manning (PI178383/Ridit)	0	RB	ML	ID835
IDO1101	PI476262	1	ID444	ML	ID835
MTF1435	Promontory (Manning)	2	ID444	ID835	ID835
IDO1506(W)	Bonneville (PI476262)	2.5	RB	ID835	ID835
Greenville	Utah 100 (Manning)	2.5	RB	ML	ID835
Yellowstone	Promontory (Manning)	3.5	ID444	ID835	ID835
SY Assure	unknown	4	RB	ID835	ID835
Rosalyn	Madsen?	6	ID444	ML	ID835
Sequoia	Eltan	9	ID444	ML	ID835
Devote (WA8271)	Eltan	9	ID444	ID835	ML
Norwest Duet	Eltan	10	ID444	ML	ML
S IDN07-28017B	Lewjain	11	ID444	ML	UD835

I

College of Agricultural and Life Sciences

3+1 resistance sources

UtahState University

Haplotypes of the 7DS and 6DL QTL in twenty-one resistant lines

Source	20 DB (%)	7DSK5.33	6DL-2	6DL-5	Source	20 DB (%)	7DSK5.33	6DL-2	6DL-5
UI Silver	0	ID444	ID835	ID835	Manning	2	ID444	ID835	ID835
IDO1906	0	ID444	ID835	ID835	Manning	2	ID444	ID835	ID835
IDO1101	0	ID444	ID835	ID835	Manning	2	RB	ID835	ID835
IDO835+	0	ID444	ML	ID835	Manning	2	RB	ID835	ID835
Manning	0	RB	ID835	ID835	Manning	2	ID444	ID835	ID835
Manning	0	RB	ID835	ID835	BNVL+	5	ID444	ID835	ID835
Manning	0	RB	ID835	ID835	Manning+	5	RB	ID835	ID835
Manning	0	RB	ML	ML	Manning	5	RB	ID835	ID835
Manning	0	RB	ML	ML	IDO587?	10	ID444	ID835	ML
UI Sparrow	0	ID444	ID835	ID835	Manning	10	RB	ID835	ID835
IDO587?	0	ID444	ID835	ID835					

9 lines have 7DS + 6DL; 8 lines have two markers of the 6DL

University of Idaho

College of Agricultural and Life Sciences

Summary and Future Plans

- US PNW has highly resistant cultivars and lines to DB.
- 6DL has higher frequency than the 7DS QTL in resistant lines.
- *QDB.ui-7DS* and *QBt.ifa-7DS* are possibly related to two Bt genes based on physical position and candidate gene locations and reactions to DB and CB.
- Bunt differential lines should be recharacterized.
- Better marker for the 6DL and 7DS should be developed.
- Candidate gene validation study is needed.

Acknowledgements

University of Idaho

Idaho Agricultural Experiment Station

