Association mapping for common bunt resistance in wheat

XXI International Workshop on Bunt and Smut Diseases

May 5-6, 2021, BOKU Campus TULLN, virtual event

Philipp Matthias Steffan, Anders Borgen, Anna Maria Torp, <u>Søren K.</u> <u>Rasmussen</u>, Gunter Backes

KØBENHAVNS UNIVERSITET

Wheat screened for their resistance reaction towards common bunt in the field

- 248 wheat accessions
 - Most were susceptible to common bunt; 25 lines showed less than 10% infection
 - 32 spring type, 191 winter type and 25 with unknown vernalization requirements
 - Central 191, Northern 62, Western 31, Europe; 35 NSGG (Idaho) Bt1-Bt13 (Goates, 1996); 19 unknown origin, 41 landraces
 - 189 varieties released from 1886 to 2010!
- Genotyping
 - DArT markers (Triticarte 2012) approx. 7000 markers
- Field: Mariager (56°39 N 10°01 E), Denmark; year 2011, 2012
 - Trouble maker:

Inoculations, fields and evaluation 2011 and 2012

- Common bunt teliospores bulk collection
 - Spores from different sites in Denmark representing a virulence spectrum (obtained from Bent J. Nielsen)

• Seeds inoculated by dusting,

- 50-80 seeds per accession per 1 meter row
- Winter sown (October), Spring sown (April)
- Resistance scoring
 - After heading, early summer
 - % of spikes with a least 1 bunt sorus
 - Log-transformation of scale

Percent	Log1-9	Log1-2
infection	scale	scale
0	1.0	1
1	1.9	1
2	2.5	2
3	3.0	2
4	3.4	2
5	3.7	2
10	4.8	2
15	5.5	2
20	6.0	2
30	6.7	2
50	7.7	2
100	9.0	2

Infection data for 2011 and 2012

- Out of 248 wheat, 239 accession were scored both years, 234 in 2011 and 243 in 2012
- %-infection by winter- and spring-type
- 25 accessions less than 10% infection
- Correlation for bunt scores between years were high: r² = 0.64, p<0.001
- Phenotypic variation
 - 79% were genetic effects
 - 11% were G x Year effects
 - 4% Year effect

Infection	Туре	2011 (%)	2012 (%)	Average (%)
Minimum	spring	12	4	19
	winter	0	0	0
Maximum	spring	92	54	60
	winter	100	73	82
Mean	spring	49	25	36
	winter	43	27	35
	all	44	27	35

• 2011

2011+2012

Distribution of 1452 polymorphic DArT markers

Chromosome	п	average distance	maximum		
		(cM)	distance (CM)		
1 A	130	1.2	19.6		
2 A	63	1.9	15.1		
3 A	61	3.5	29.5		
4 A	60	1.8	54.5		
5 A	25	5.0	60.9		
6 A	125	0.9	34.5		
7 A	85	2.1	28.9		
1 B	93	1.2	15.1		
2 B	124	1.1	9.2		
3 B	132	1.0	12.9		
4 B	33	3.5	27.1		
5 B	76	2.1	20.7		
6 B	104	1.3	20.0		
7 B	66	3.5	69.6		
1 D	36	2.6	14.6		
2 D	41	2.8	27.8		
3 D	46	3.5	95.4		
4 D	3	24.3	0		
5 D	2	80.9	76.4		
6 D	20	6.7	94.1		
7 D	127	1.4	56.3		
A genome	549	2.3	60.9		
B genome	628	2.0	69.6		
D genome	275	17.5	95.4		

Manhattan plots 2011 and 2011+2012

Structure in the population of 248 wheat

QTL identified on 2B and 7A in this population of 248 wheat accessions

• Based on 2 year field

QTL	Marker	Chr.	Pos.	MAF	Year	Scale	р	q	p perm.	\mathbb{R}^2	Effect
Q Cbt.cph-2B	wPt.744022	2 B	10.88	0.41	2011	log-1–9	0.00001	0.016	0.00011	0.07	0.76
Q Cbt.cph-2B	wPt.0100	2 B	4.21	0.49	2011	log-1–9	0.00006	0.042	0.00011	0.06	0.68
Q Cbt.cph-7A	tPt.6221	7 A	55.13	0.05	mean	log-1–2	0.000004	0.005	0.00003	0.08	0.23

• From 2014 Thesis

 Table 1 Bt genes and QTL for common bunt resistance in wheat for which chromosomal locations are known.

Gene	Chromosome	Reference
Bt 1	2 B	Sears et al (1960); Gupta (2007)
Bt 4	1 B	Schmidt et al (1969)
Bt9	6DL	Steffan et al (2014)
Bt 10	6 DS	Menzies et al (2006)
Q Cbt.crc-1B.1	1 BS	Fofana et al (2008)
Q Cbt.crc-1B.2	1 BL	Fofana et al (2008)
Xgwm 374 ^a	1 BS	Wang et al (2009)
Xgwm 273 ^a	1 B	Dumalasová et al (2012)
Xgwm 408 ^a	5 B	Dumalasová et al (2012)
QCbt.crc-7A	7 AL	Fofana et al (2008)
Xpsp 3050 ^a	7 A	Dumalasová et al (2012)
Xgwm 43 ^a	7 B	Dumalasová et al (2012)
QCbt.spa-7B.1	7 B	Knox et al (2013)

^a For QTL which were not designated following McIntosh et al (1998) the name of the nearest flanking marker is given.

- According to Muellner et al. 2021 a total of 24 QTL for common bunt has been identified by adding 1AL, 7AL
- Gordon et al. 2020 QTL 6DS
- Wang et al. 2019 QTL 7AL
- Bokore et al. 2019 5A, 7A
- Singh et al. 2016 1B, 4B, 5B, 6D, 7D

Thanks to

- P.M. Steffan: Biotechnology Assisted Wheat Breeding for Organic Agriculture (Ph.D. thesis 2014, University of Copenhagen)
- Steffan, Borgen, Torp, Rasmussen, Backes: Association mapping for common bunt resistance in wheat. (in preparation)
- P. M. Steffan, A. M. Torp, A. Borgen, G. Backes, S. K. Rasmussen: Mapping of Common Bunt Resistance Gene Bt9 in Wheat. Theor Appl Genet (2017) 130: 1031–1040 DOI: 10.1007/s00122-017-2868-6

