Evaluation of genomic selection methods for dwarf bunt resistance in wheat

Margaret Krause, Tyler Gordon, David Hole, Jianli Chen

XXI International Workshop on Bunt and Smut Diseases 6 May 2021

Why quantitative resistance?

the evolution of the pathogen to overcome host resistance

Why quantitative resistance?

Why genomic selection?

Why genomic selection?

Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years

Rex Bernardo 🔀 Crop Sci. 48:1649-1664

Marker assisted selection (MAS):

- Requires identification (significance testing) and validation of traitassociated markers
- Difficult to implement in breeding when trait is controlled by many QTL
- QTL analyses often miss small-effect loci
- Estimated QTL effects are usually inflated

Genomic selection (GS)¹:

- Significance testing not required
- Can select on small-effect loci
- Requires many markers

¹Meuwissen et al. 2001

Why genomic selection?

GS in practice:

- Reduced breeding cycle time
- Reduced cost of phenotyping
- Increased genetic gain

Poland J, Rutkoski J. 2016. Annu. Rev. Phytopathol. 54:79–98

Testing genomic selection for dwarf bunt resistance

To evaluate the potential of GS to improve breeding for dwarf bunt resistance, we need a dataset with:

- Dwarf bunt phenotypes
- Genome-wide markers

Genetic characterization and genome-wide association mapping for dwarf bunt resistance in bread wheat accessions from the USDA National Small Grains Collection

Tyler Gordon, Rui Wang, David Hole, Harold Bockelman, J. Michael Bonman & Jianli Chen 🖂

Theoretical and Applied Genetics 133, 1069–1080(2020) Cite th

- **Phenotypes:** 246 accessions score in the field for dwarf bunt incidence in Logan, UT for three years
- Genotypes: 90 K iSelect SNP assay (19,281 markers)

Testing genomic selection for dwarf bunt resistance

GBLUP model (vanRaden, 2008)

 $y = 1\mu + Zu + e$

y is vector of genomic estimated breeding values (GEBVs)

Cross validation

"Prediction accuracy": Pearson's correlation between predicted and observed dwarf bunt incidence

Genomic selection when majoreffect genes are known

effects

Allele

Accession	Bt gene	Origin	BLUE	DB- 6D1	DB- 6D2	QDB.ui- 6DLª	QDB.ui- 7AL ^b	QDB.ui- 7DS ^c
PI 345106		Serbia	3.9	+	-	-	-	-
PI 345428		Montenegro	4	-	-	-	-	-
PI 476212		USA	4	+	-	-	-	+
PI 560601		Turkey	3.8	+	-	-	-	-

QTL explained 9-15% of the phenotypic variation Gordon et al. 2020

Genomic selection outperforms marker assisted selection, but accuracies are reduced when predicting less-related material

Next steps

Assemble and evaluate genomic selection training population that targets:

- Relatedness to Intermountain West wheat breeding programs
- Germplasm with intermediate phenotypes

Acknowledgements

University of Idaho

Idaho Agricultural Experiment Station

Looking forward to working with all of you!!!

I will start at Utah State University on July 1st

Reach me at margaret.krause@usu.edu

